139 research outputs found

    Assessment of optic disc and ganglion cell layer in diabetes mellitus type 2

    Get PDF
    The purpose of this study was to compare the optic disc parameters, retinal nerve fiber (RNFL), and macular ganglion cell layers between patients with diabetes mellitus (DM) type 2 and healthy controls. In this cross-sectional study, 69 eyes of 69 diabetic patients without diabetic retinopathy and 47 eyes of 47 healthy controls were included. Optic disc parameters (i.e., rim area, disc area, cup to disc ratio, cup volume), RNFL, and macular ganglion cell-inner plexiform layers (GCL+IPL) thickness were measured by means of spectral domain optical coherence tomography. There were not statistically significant differences between the diabetic patients and healthy controls in terms of RNFL thickness (P=.32), rim area (P=.20), disc area (P=.16), cup volume (P=.12), and average macular GCL+IPL thickness (P=.11). Nevertheless, binocular RNFL thickness symmetry percentage (P=.03), average cup to disc ratio (P=.02), and superior-nasal macular GCL+IPL thickness (P=.04) were statistically significantly different in the diabetic and control groups. Diabetic patients without retinopathy have more binocular RNFL thickness asymmetry, higher cup to disc ratio, and thinner sectoral macular GCL+IPL when compared to healthy controls. Our results may support the statement that DM causes inner retinal neurodegenerative changes. © 2017 the Author(s). Published by Wolters Kluwer Health, Inc

    Treatment Challenges in Pediatric Stroke Patients

    Get PDF
    Aim. In this study we presented our experience of 18 years on the etiology, risk factors, prophylactic and acute treatment, the effect of treatment to recurrence rate of patients with stroke. Methods. The population included 108 patients who had been treated for stroke at Pediatric Neurology Department of Ankara University with the diagnosis of arterial ischemic stroke and sinovenous thrombosis between January 1992 and August 2010. Forty-one girls (38%) and 67 boys (62%) with mean symptom age 3.1 ± 4.04 years, (0–18 years old) were followed up with a mean period of 4.9 ± 3.78 years (0–17 years). Results. 30 patients had no risk factors, 34 patients had only one risk factor and 44 patients had multiple risk factors. Recurrence was seen in three patients. There was no any statistical correlation between the recurrence of stroke and the existence of risk factors (P = .961). Seventeen patients received prophylactic treatment; 2 of them without any risk factors, 3 had one risk factor, 12 patients, who constituted the majority of our patients, had multiple risk factors (P = .024). Conclusion. With this study we showed that the right prophylaxis for right patients reduces the rate of recurrence

    Status and perspectives for low energy kaon-nucleon interaction studies at DAΦNE : from SIDDHARTA to SIDDHARTA-2

    Get PDF
    The study of the antikaon nucleon system at very low energies plays a key role for the understanding of the strong interaction between hadrons in the strangeness sector. The information provided by the low energy kaon- nucleon interaction is accessible through the study of kaonic atoms. The lightest atomic systems, namely the kaonic hydrogen and the kaonic deuterium, provide the isospin dependent kaon-nucleon scattering lengths by measuring the X-rays emitted during their de-excitation to the 1s level. Until now, the most precise kaonic hydrogen measurement and an exploratory measurement of kaonic deuterium were carried out at the DAΦNE collider by the SIDDHARTA collaboration, combining the excellent quality kaon beam delivered by the collider with new experimental techniques, as fast and very precise X-ray detectors, like the Silicon Drift Detectors. Today, the most important experimental information missing in the field of the low-energy antikaon-nucleon interactions is the experimental determination of the hadronic energy shift and width of kaonic deuterium, and will be measured by the new SIDDHARTA-2 experiment, which is installed in DAΦNE and is ready to start the data taking campaign

    Studies of the linearity and stability of silicon drift detectors for kaonic atoms X-ray spectroscopy

    Get PDF
    The SIDDHARTA-2 experiment at the DAFNE collider aims to perform precision measurements of kaonic atoms X-ray spectroscopy for the investigation of the antikaon?nucleon strong interaction. To achieve this goal, novel large-area Silicon Drift Detectors (SDDs) have been developed. These devices have special geometry, field configuration, and readout electronics that ensure excellent performance in terms of linearity and stability. The paper presents preliminary results for the linearity determination and stability monitoring of the SDDs system during the measurement of kaonic deuterium carried out in the summer of 2022

    CdZnTe detectors tested at the DA{\Phi}NE collider for future kaonic atoms measurements

    Full text link
    The SIDDHARTA-2 collaboration at the INFN Laboratories of Frascati (LNF) aims to perform groundbreaking measurements on kaonic atoms. In parallel and beyond the ongoing kaonic deuterium, presently running on the DAΦ\PhiNE collider at LNF, we plan to install additional detectors to perform further kaonic atoms' studies, taking advantage of the unique low energy and low momentum spread KK^- beam delivered by the at-rest decay of the ϕ\phi meson. CdZnTe devices are ideal for detecting transitions toward both the upper and lower levels of intermediate-mass kaonic atoms, like kaonic carbon and aluminium, which have an important impact on the strangeness sector of nuclear physics. We present the results obtained in a set of preliminary tests conducted on DAΦ\PhiNE, in view of measurements foreseen in 2024, with the twofold aim to tune the timing window required to reject the extremely high electromagnetic background, and to quantify the readout electronics saturation effect due to the high rate, when placed close to the Interaction Region (IR). In the first test we used commercial devices and electronics, while for the second one both were customized at the IMEM-CNR of Parma and the University of Palermo. The results confirmed the possibility of finding and matching a proper timing window where to identify the signal events and proved better performances, in terms of energy resolution, of the custom system. In both cases, strong saturation effects were confirmed, accounting for a loss of almost 90\% of the events, which will be overcome by a dedicated shielding structure foreseen for the final experimental setup

    Potentialities of CdZnTe Quasi-Hemispherical Detectors for Hard X-ray Spectroscopy of Kaonic Atoms at the DAΦNE Collider

    Get PDF
    Kaonic atom X-ray spectroscopy is a consolidated technique for investigations on the physics of strong kaon-nucleus/nucleon interaction. Several experiments have been conducted regarding the measurement of soft X-ray emission (<20 keV) from light kaonic atoms (hydrogen, deuterium, and helium). Currently, there have been new research activities within the framework of the SIDDHARTA-2 experiment and EXCALIBUR proposal focusing on performing precise and accurate measurements of hard X-rays (>20 keV) from intermediate kaonic atoms (carbon, aluminum, and sulfur). In this context, we investigated cadmium-zinc-telluride (CdZnTe or CZT) detectors, which have recently demonstrated high-resolution capabilities for hard X-ray and gamma-ray detection. A demonstrator prototype based on a new cadmium-zinc-telluride quasi-hemispherical detector and custom digital pulse processing electronics was developed. The detector covered a detection area of 1 cm2 with a single readout channel and interesting room-temperature performance with energy resolution of 4.4% (2.6 keV), 3% (3.7 keV), and 1.4% (9.3 keV) FWHM at 59.5, 122.1, and 662 keV, respectively. The results from X-ray measurements at the DAΦNE collider at the INFN National Laboratories of Frascati (Italy) are also presented with particular attention to the effects and rejection of electromagnetic and hadronic background

    Main features of the SIDDHARTA-2 apparatus for kaonic deuterium X-ray measurements

    Get PDF
    The low-energy, non-perturbative regime of QCD can be studied directly by X-ray spectroscopy of light kaonic atoms. The SIDDHARTA-2 experiment, located at the DAΦNE collider, aims to measure the 2p \to 1s transition in kaonic deuterium for the first time to extract the antikaon-nucleon scattering lengths. This measurement is impeded, inter alia, by the low K^{-}d X-ray yield. Hence, several updates have been implemented on the apparatus to increase the signal-to-background ratio, which are discussed in detail in this paper: a lightweight gas target cell, novel Silicon Drift Detectors for the X-ray detection with excellent performance, and a veto system for active background suppression. The experiment has undergone a first preparatory run during DAΦNE’s commissioning phase in 2021, concluding with a successful kaonic helium measurement
    corecore